Discussion. The crystal structure contains discrete molecules of the $c i s$ isomer linked in chains parallel to c by intermolecular $\mathrm{O}(4)-\mathrm{H} \cdots \mathrm{O}(1)(2.703 \AA$) hydrogen bonds (Fig. 1). The conformation of the carboxyl groups allows the formation of an intramolecular hydrogen bond $[\mathrm{O}(2)-\mathrm{H} \cdots \mathrm{O}(3) 2.827 \AA$). In each aromatic ring the atoms are close to coplanar (r.m.s. deviation $0.003-0.006 \AA$). The furan ring is slightly distorted from planarity towards a very shallow envelope conformation with $O(5) 0.031 \AA$ from the five-membered-ring plane; the dihedral angle between the furan- and benzene-ring planes in the isobenzofuran moiety is 2.0°. The orientations of the phenyl and carboxylic groups are defined by the torsion angles $\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(21)-\mathrm{C}(22) \quad-13 \cdot 8, \quad \mathrm{C}(12)-\mathrm{C}(3)-$ $\mathrm{C}(31)-\mathrm{C}(36) 25 \cdot 4, \mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)-79 \cdot 8$, and $\mathrm{C}(12)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(3)-98.4^{\circ}$. The bond lengths in the molecule are in accord with expected values; mean distances are $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$ aromatic
1.382, $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right) 1.525, \mathrm{C}\left(s p^{3}\right)-\mathrm{O} 1.444, \mathrm{C}=\mathrm{O}$ $1 \cdot 208, \mathrm{C}\left(s p^{2}\right)-\mathrm{O} 1 \cdot 309 \AA$.

We thank Dr J. G. Smith for bringing the problem to our attention. Financial support from the National Research Council of Canada is gratefully acknowledged.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Ferguson, G. \& Roberts, P. J. (1978). Acta Cryst. B34, 3083-3086.
Sheldrick, G. M. (1977). SHELX. A program for crystal structure determination. Univ. of Cambridge, England.
Smith, J. G. \& McCall, R. B. (1978). Personal communication.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Benzo[b][1,4]diazabicyclo[3.2.1]octane, a Molecule Containing a $\ddot{\mathrm{N}}-\mathrm{C}\left(s p^{2}\right)$ Single Bond

By Herman L. Ammon,* Paul H. Mazzocchi,* Mark C. Regan and Elena Colicelli
Department of Chemistry, University of Maryland, College Park, MD 20742, USA

(Received 1 November 1978; accepted 21 March 1979)

Abstract

C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}, M_{r}=160 \cdot 2\), monoclinic, $P 2_{1} / n$, $a=9.764$ (6), $b=10.528$ (2), $c=8.698$ (2) $\AA, \beta=$ $106.31(2)^{\circ}, Z=4, D_{c}=1.24 \mathrm{Mg} \mathrm{m}^{-3}$. The structure was solved with direct methods. The final R index was 0.037 for 1041 reflections. The two benzene- $\ddot{\mathrm{N}}$ bonds are, respectively, 1.387 and $1.452 \AA$. The first is typical of anilines and reflects some double-bond character, whereas the geometry of the nitrogen involved in the $1.452 \AA$ bond indicates that it is essentially a single $\ddot{\mathrm{N}}-\mathrm{C}\left(s p^{2}\right)$ linkage.

Introduction. Our initial interest in the title compound (I) was as a bridgehead N-containing substrate for lanthanide shift reagent-nuclear magnetic resonance experiments. Its structural details were of interest because the orientations of the secondary [$\mathrm{N}(4)$] and tertiary [$\mathrm{N}(1)$] nitrogen atoms relative to the aromatic ring suggest that two quite different amine- $\mathrm{C}\left(s p^{2}\right)$ bonds are present in the molecule. In particular, $\mathrm{N}(1)$'s non-bonding electron-pair orbital should be approximately parallel to the adjacent benzene ring, resulting in

[^0]a situation in which the $\mathrm{N}(1)-\mathrm{C}(2)$ bond should be essentially free of bond-shortening π-type conjugation effects.

(I) was prepared according to the procedure of Cunningham (1969) and Cunningham \& Day (1973) with modifications: colorless solid, m.p. 407-408 K (literature m.p. 404-407 K). Recrystallization from petroleum ether ($333-383 \mathrm{~K}$) gave suitable diffraction samples. All X-ray measurements were made with a $0.2 \times 0.2 \times 0.4 \mathrm{~mm}$ specimen mounted parallel to the long crystal axis (b) on a Picker FACS-I diffractometer with Mo radiation (graphite monochromator, $K a$, $\lambda=0.71069 \AA$). The unit-cell parameters were obtained by least squares from the Bragg angles of 13 reflections manually centered at $\pm 2 \theta$ (average of $12 \theta_{\text {o }}$ $-2 \theta_{c}{ }^{\prime}=0.004^{\circ}$).
© 1979 International Union of Crystallography

X-ray intensities were measured with the $\theta-2 \theta$ scan method with a 2θ rate of $2^{\circ} \mathrm{min}^{-1}$ and with 10 s backgrounds. Three standard reflections were counted at 100 -reflection intervals. 1762 data were measured to a 2θ maximum of 50° giving 1513 unique reflections (excluding 98 systematically absent data); 1041 of these were 3σ above background. The structure was solved by the routine application of direct methods with the XRAY system (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) subprogram PHASE. An E map computed with 244 phases ($116+, 128-$) revealed the twelve C and N atoms. The structure was refined by the full-matrix least-squares minimization of the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1$ for $F_{o}<12$ and $w=$ $\left(12 / F_{o}\right)^{o}$ for $F_{o}^{c}>12$ (Hughes, 1941). The calculations used anisotropic temperature factors for C and N , isotropic terms for H (preliminary H positions were calculated from the geometry of the $\mathrm{C}-\mathrm{N}$ framework) and included a correction for isotropic extinction

Fig. 1. ORTEP drawing (Johnson, 1965). The C and N atums are depicted as 50% ellipses, and the H atoms are drawn as $0 \cdot 1 \AA$ radius circles.

Table 1. Atomic fractional coordinates and estimated standard deviations (in parentheses)

	x	y	z
$\mathrm{N}(1)$	0.7895 (2)	$0 \cdot 2018$ (1)	0.3572 (2)
N(4)	0.9977 (2)	$0 \cdot 3039$ (2)	0.6204 (2)
C(2)	$0 \cdot 8008$ (2)	$0 \cdot 1593$ (2)	0.5191 (2)
C(3)	0.9085 (2)	0.2091 (2)	0.6475 (2)
C(5)	0.9922 (2)	$0 \cdot 3271$ (2)	0.4536 (2)
C(6)	1.0403 (2)	0.2136 (2)	$0 \cdot 3720$ (3)
C (7)	0.9020 (2)	$0 \cdot 1389$ (2)	$0 \cdot 2992$ (3)
C (8)	0.8352 (2)	0.3357 (2)	0.3636 (3)
C(9)	0.7087 (2)	0.0682 (2)	0.5459 (3)
C(10)	0.7222 (2)	0.0221 (2)	0.6986 (3)
C(11)	0.8293 (3)	0.0701 (2)	0.8246 (3)
C(12)	0.9196 (2)	$0 \cdot 1630$ (2)	0.8012 (2)
H(4)	1.088 (3)	$0 \cdot 304$ (2)	0.693 (3)
H(5)	1.047 (2)	$0 \cdot 405$ (2)	0.450 (2)
$\mathrm{H}(6 \mathrm{~A})$	1.081 (2)	0.243 (2)	0.288 (3)
$\mathrm{H}(6 \mathrm{~B})$	1.113 (2)	$0 \cdot 165$ (2)	0.451 (3)
$\mathrm{H}(7 \boldsymbol{A})$	0.871 (2)	$0 \cdot 147$ (2)	$0 \cdot 184$ (3)
$\mathrm{H}\left(7 B^{\text {) }}\right.$	0.908 (2)	0.047 (2)	0.328 (3)
$\mathrm{H}(8)$	0.822 (2)	$0 \cdot 368$ (2)	0.254 (3)
$\mathrm{H}(8 B)$	0.780 (2)	$0 \cdot 389$ (2)	0.418 (3)
H(9)	0.635 (2)	0.038 (2)	0.456 (3)
H(10)	0.659 (2)	-0.043 (2)	0.717 (3)
H(11)	0.839 (2)	0.036 (2)	0.933 (3)
H(12)	0.994 (2)	$0 \cdot 196$ (2)	0.891 (3)

(Larson, 1970). Reflections were included in the refinement only if $I_{o}>3 \sigma\left(I_{o}\right)$. Atomic scattering factors for C and N were calculated from the analytical expressions of Cromer \& Mann (1968); the H scattering factors were interpolated from the tabulated values of Stewart, Davidson \& Simpson (1965). The final R $\left(\sum\left|F_{o}\right|-\left|F_{c}\right| / \sum\left|F_{o}\right|\right)$ and weighted $R\left\{\mid \sum w\left(\mid F_{o^{\prime}}-\right.\right.$ $\left.\left.\left|F_{c}\right|^{2}\right) /\left.w F_{o}^{2}\right|^{1 / 2}\right\}$ values were 0.037 and 0.044 respectively. Atomic coordinates are listed in Table 1.*

Discussion. An ORTEP drawing of (1) is shown in Fig. 1. The benzene ring is planar within experimental error with average and maximum out-of-plane deviations of 0.006 and $0.010 \AA$, and both nitrogen substituents are close to the plane with out-of-plane deviations of 0.068 $\AA[\mathrm{N}(1)]$ and $-0.029 \AA[\mathrm{~N}(4)]$. The $\mathrm{N}(1)-\mathrm{C}(7)-$ $\mathrm{C}(6)-\mathrm{C}(5)$ bridge is approximately planar with average and maximum out-of-plane deviations of 0.031 and $0.038 \AA$ A.

Bond lengths and angles are listed in Table 2. The extent to which the sum of the bond angles at a trisubstituted atom differs from 360° can provide a measure of the planarity of the atom. The angle sum of 346° at the secondary nitrogen $\mathrm{N}(4)$, while significantly different from 360°, is within the bounds of what one would expect for a planar atom in conjugation with an adjacent benzene ring. The $\mathrm{C}(3)-\mathrm{N}(4)$ distance of $1.387 \AA$ is typical of aniline-type $\mathrm{C}-\mathrm{N}$ bonds and reflects some double-bond character. In 1,8-bis-

[^1]Table 2. Bond lengths (\AA), and bond angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses, for the carbon and nitrogen atoms

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.452(2)$	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.457(3)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.486(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.529(3)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.475(3)$	$\mathrm{C}(5)-\mathrm{C}(8)$	$1.515(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.403(3)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.57(3)$
$\mathrm{C}(2)-\mathrm{C}(9)$	$1.378(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.385(3)$
$\mathrm{C}(3)-\mathrm{N}(4)$	$1.387(2)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.380(3)$
$\mathrm{C}(3)-\mathrm{C}(12)$	$1.398(3)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.370(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$109.2(1)$	$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	$105.9(2)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8)$	$108.5(1)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(8)$	$101.8(2)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$101.2(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$104.0(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.5(2)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$106 \cdot 2(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(9)$	$120.2(1)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(5)$	$102.3(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(9)$	$120.3(2)$	$\mathrm{C}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$121.0(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	$120.0(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.7(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(12)$	$118.1(2)$	$\mathrm{C}(10)-\mathrm{C}(111)-\mathrm{C}(12)$	$121.3(2)$
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(12)$	$121.9(2)$	$\mathrm{C}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	$120.6(2)$
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$116.1(1)$		
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.7(2)$		

(dimethylamino)naphthalene (II), for example, peri interactions have forced one CH_{3} of each $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$ group out of the naphthalene plane, resulting in angle sums at both nitrogens of 347°; the average C (naphthalene)- N distance is $1.397 \AA$ and the amount of π character in these bonds has been estimated at 20\% (Einspahr, Robert, Marsh \& Roberts, 1973). In the case of the tertiary nitrogen atom $\mathrm{N}(1)$, the angle sum of 318.4° clearly indicates a pyramidal geometry, and the arrangement of $C_{1}(7)$ and $C(8)$, respectively, above and below the benzene plane, suggests that the usual $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}$ (amine) π-type conjugation must be minimal for $\mathrm{C}(2)-\mathrm{N}(1)$. This possibility is supported by the $1.452 \AA$ distance, which undoubtedly is close to that of a single $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}\left(s p^{3}\right)$ bond. Other $\mathrm{C}-\mathrm{N}$ distances which provide points of reference are the $\mathrm{C}\left(s p^{3}\right)-\mathrm{N}\left(s p^{3}\right)$ of $1.472 \AA$ in methylamine (Sutton, 1965), the presumably pure single bond $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}\left(s p^{2}\right)$ of $1.470 \AA$ in (III) (Camerman, Jensen \& Balaban, 1969; Camerman, 1970), and the $1.425 \AA$ in (IV) (Adler, Goode, King, Mellor \& Miller, 1976), which might be classified as $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}\left(s p^{2}\right)$ based on the average angle sum of 356° at nitrogen. The difference between the $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}\left(s p^{2}\right)$ lengths in (III) and (IV) is presumably due to the different kinds of nitrogen atoms ($\ddot{\mathrm{N}} v s \mathrm{~N}^{+}$).

(II)

(III)

(IV) $\mathrm{R}=-\left(\mathrm{CH}_{2}\right)_{3}-$

The intermolecular packing arrangement is limited to van der Waals contacts, with one exception. There is a weak $N(4)-H(4) \cdots N(1)$ interaction ($2.08 \AA$) between
the N acceptor at x, y, z and the H donor at $\frac{1}{2}+x, \frac{1}{2}-y$, $-\frac{1}{2}+z$

This work was supported by the National Institutes of Health (R01-AM17458). The crystallographic calculations were supported through the facilities of the Computer Science Center, University of Maryland.

References

Adler, R. W., Goode, N. C., King, T. J., Mellor, J. M. \& Miller, B. W. (1976). Chem. Commun. pp. 173-174.
Camerman, A. (1970). Can. J. Chem. 48, 179-181.
Camerman, A., Jensen, L. H. \& Balaban, A. T. (1969). Acta Cryst. B25, 2623-2630.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Cunningham, H. C. (1969). PhD Dissertation, Univ. of Pennsylvania; Diss. Abstr. Int. B, 30, 2602.
Cunningham, H. C. \& Day, A. R. (1973). J. Org. Chem. 38, 1225-1227.
Einspahr, H., Robert, J. B., Marsh, R. E. \& Roberts, J. D. (1973). Acta Cryst. B29, 1611-1617.

Hughes, E. W. (1941). J. Am. Chem. Soc. 63, 1737-1752.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, p. 291. Copenhagen: Munksgaard.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Suppl. 1956-1965. London: The Chemical Society.

Acta Cryst. (1979). B35, 1724-1727

Structure of Adenosine 5^{\prime}-Methylphosphonate Hemihydrate

By Charles L. Barnes and Stuart W. Hawkinson
Department of Biochemistry, University of Tennessee, Knoxville, Tennessee 37916, USA

(Received 8 November 1978; accepted 4 April 1979)

Abstract

C}_{11} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{P} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}, P 1, a=10 \cdot 510\) (2), $b=9.419$ (2), $c=7.803$ (2) $\AA, \alpha=76.77$ (1), $\beta=$ 97.24 (2), $\gamma=95.99(1)^{\circ}, Z=2, D_{c}=1.582, D_{o}=$ $1.576 \mathrm{Mg} \mathrm{m}^{-3}, V=743.7 \AA^{3}, \mathrm{FW}=354.3$, $\lambda(\mathrm{Mo}$ $\left.K \alpha_{1}\right)=0.70926 \AA, T=299 \pm 1 \mathrm{~K}, F(000)=370$. The intensity data were collected on an automated diffractometer, and the structure was solved from a

sharpened Patterson function calculated with ($E^{2}-1$) coefficients. Full-matrix least-squares refinement of the 47 non-hydrogen atoms and difference Fourier placement of the 34 H atoms yielded an R of 0.029 for the 3339 significant data. The molecules are packed in pairs by base stacking and hydrogen bonds between the base and the phosphonate O atoms.

[^0]: * Authors to whom correspondence should be addressed.

 0567-7408/79/071722-03\$01.00

[^1]: * Lists of structure factors, thermal parameters and distances and angles involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34286 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

